Bayesian Estimation for Homogeneous and Inhomogeneous Gaussian Random Fields

نویسنده

  • Robert G. Aykroyd
چکیده

This paper investigates Bayesian estimation for Gaussian Markov random elds. In particular, a new class of inhomogeneous model is proposed. This inhomogeneous model uses a Markov random eld to describe spatial variation of the smoothing parameter in a second random eld which describes the spatial variation in the observed intensity image. The coupled Markov random elds will be used as prior distributions, and combined with Gaussian noise models to produce posterior distributions on which estimation will be based. All model parameters are estimated, in a fully Bayesian setting, using the Metropolis-Hastings algorithm. The models and algorithms will be illustrated using various artiicial examples. The full posterior estimation procedures using homogeneous and inhomogeneous models will be compared. For the examples considered the fully Bayesian estimation for inhomogeneous models performs very favourably when compared to methods using homogeneous models, allowing diierential smoothing and varying local textures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Inhomogeneous Bayesian Texture Model for Spatially Varying Parameter Estimation

In statistical model based texture feature extraction, features based on spatially varying parameters achieve higher discriminative performances compared to spatially constant parameters. In this paper we formulate a novel Bayesian framework which achieves texture characterization by spatially varying parameters based on Gaussian Markov random fields. The parameter estimation is carried out by ...

متن کامل

Adaptive Gaussian Markov Random Fields with Applications in Human Brain Mapping

Functional magnetic resonance imaging (fMRI) has become the standard technology in human brain mapping. Analyses of the massive spatio–temporal fMRI data sets often focus on parametric or nonparametric modeling of the temporal component, while spatial smoothing is based on Gaussian kernels or random fields. A weakness of Gaussian spatial smoothing is underestimation of activation peaks or blurr...

متن کامل

Parameter Estimation for Inhomogeneous Markov Random Fields Using PseudoLikelihood

We describe an algorithm for locally-adaptive parameter estimation of spatially inhomogeneous Markov random elds (MRFs). In particular, we establish that there is a unique solution which maximizes the local pseudo-likelihood in the inhomogeneous MRF model. Subsequently we demonstrate how Besag's iterative conditional mode (ICM) procedure can be generalized from homogeneous MRFs to inhomogeneous...

متن کامل

Bayesian Estimation of Shift Point in Shape Parameter of Inverse Gaussian Distribution Under Different Loss Functions

In this paper, a Bayesian approach is proposed for shift point detection in an inverse Gaussian distribution. In this study, the mean parameter of inverse Gaussian distribution is assumed to be constant and shift points in shape parameter is considered. First the posterior distribution of shape parameter is obtained. Then the Bayes estimators are derived under a class of priors and using variou...

متن کامل

Contour Estimation on Piecewise Homogeneous Random Fields

Contour Estimation, Bayesian Estimation, Random Fields, Dynamic Programming, Multigrid Methods. This paper addresses contour estimation on images modeled as piecewise homogeneous random elds. It is therefore assumed that images are samples of random elds composed of a set of homogeneous, in a statistical sense, regions; pixels within each region are assumed to be independent samples of a given ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Pattern Anal. Mach. Intell.

دوره 20  شماره 

صفحات  -

تاریخ انتشار 1998